8,296 research outputs found

    Dual-band MIMO antenna using double-T structure for WLAN applications

    Get PDF
    Session - Interactive 2.3: Multi-Band AntennasThe Conference program's website is located at http://www.iwat2014.org/index.php/program/detailed-programA dual-band multiple-input-multiple-output (MIMO) antenna is proposed for the wireless-local-area-network (WLAN) applications in the 2.4-GHz and 5.2-GHz bands. The antenna consists of two double-T monopole elements with microstrip-fed and symmetrically placed on a substrate. To enhance isolation between the two monopole elements, three slots are cut on the ground plane on the other side of the substrate. The longer slot is used for better isolation in the 2.4-GHz band, while the two shorter slots are used for the 5.2-GHz band. Simulation and measurement are used to study the antenna performance in terms of S parameters, radiation patterns, realized gain, efficiency, and envelope correlation coefficient. Results show that the MIMO antenna has the two operation bands of 2.20-2.75 GHz and 5.09-5.50 GHz with mutual coupling of less than -15 dB and envelope correlation coefficient of less than 0.1, making it a good candidate for WLAN applications.published_or_final_versio

    Differential-phase-shift quantum key distribution using heralded narrow-band single photons

    Get PDF
    published_or_final_versio

    Exploring wettability difference-driven wetting by utilizing electrospun chimeric Janus microfiber comprising cellulose acetate and polyvinylpyrrolidone

    Get PDF
    In exploring the difference in the wettability of fibers with various structures, three inner constructions of fibers, namely, uniaxial, Janus and chimeric Janus, have been fabricated by electrospinning. In electrospun fibers, polyvinyl pyrrolidone and cellulose acetate were used as a polymer matrix and ketoprofen was used as a model drug. Morphologies and inner structures were respectively investigated by scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). Physical states and compatibilities of materials were detected by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Water contact angle (WCA) tests were conducted to determine the difference between wettability and wetting time among assorted fiber membranes. Results showed that the wettability gradient could drive water movement and wetting, which resulted in the rapid decrease of the WCA, to prepare Janus and chimeric Janus fiber membranes compared with uniaxial fiber membranes. Otherwise, in vitro drug release experiments were carried out and four fitting models were applied in matching release profiles. The results showed that electrospun fiber membranes belonged to sustained-release systems and such membranes were influenced by drug diffusion and backbone corrosion effects. In this study, whether electrospun multilayer Janus fibers could affect wettability and drug release was investigated

    Deep Burst Denoising

    Full text link
    Noise is an inherent issue of low-light image capture, one which is exacerbated on mobile devices due to their narrow apertures and small sensors. One strategy for mitigating noise in a low-light situation is to increase the shutter time of the camera, thus allowing each photosite to integrate more light and decrease noise variance. However, there are two downsides of long exposures: (a) bright regions can exceed the sensor range, and (b) camera and scene motion will result in blurred images. Another way of gathering more light is to capture multiple short (thus noisy) frames in a "burst" and intelligently integrate the content, thus avoiding the above downsides. In this paper, we use the burst-capture strategy and implement the intelligent integration via a recurrent fully convolutional deep neural net (CNN). We build our novel, multiframe architecture to be a simple addition to any single frame denoising model, and design to handle an arbitrary number of noisy input frames. We show that it achieves state of the art denoising results on our burst dataset, improving on the best published multi-frame techniques, such as VBM4D and FlexISP. Finally, we explore other applications of image enhancement by integrating content from multiple frames and demonstrate that our DNN architecture generalizes well to image super-resolution

    A mutation in a functional Sp1 binding site of the telomerase RNA gene (hTERC) promoter in a patient with Paroxysmal Nocturnal Haemoglobinuria

    Get PDF
    BACKGROUND: Mutations in the gene coding for the RNA component of telomerase, hTERC, have been found in autosomal dominant dyskeratosis congenita (DC) and aplastic anemia. Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal blood disorder associated with aplastic anemia and characterized by the presence of one or more clones of blood cells lacking glycosylphosphatidylinositol (GPI) anchored proteins due to a somatic mutation in the PIGA gene. METHODS: We searched for mutations in DNA extracted from PNH patients by amplification of the hTERC gene and denaturing high performance liquid chromatography (dHPLC). After a mutation was found in a potential transcription factor binding site in one patient electrophoretic mobility shift assays were used to detect binding of transcription factors to that site. The effect of the mutation on the function of the promoter was tested by transient transfection constructs in which the promoter is used to drive a reporter gene. RESULTS: Here we report the finding of a novel promoter mutation (-99C->G) in the hTERC gene in a patient with PNH. The mutation disrupts an Sp1 binding site and destroys its ability to bind Sp1. Transient transfection assays show that mutations in this hTERC site including C-99G cause either up- or down-regulation of promoter activity and suggest that the site regulates core promoter activity in a context dependent manner in cancer cells. CONCLUSIONS: These data are the first report of an hTERC promoter mutation from a patient sample which can modulate core promoter activity in vitro, raising the possibility that the mutation may affect the transcription of the gene in hematopoietic stem cells in vivo, and that dysregulation of telomerase may play a role in the development of bone marrow failure and the evolution of PNH clones

    Super-resolution far-field ghost imaging via compressive sampling

    Full text link
    Much more image details can be resolved by improving the system's imaging resolution and enhancing the resolution beyond the system's Rayleigh diffraction limit is generally called super-resolution. By combining the sparse prior property of images with the ghost imaging method, we demonstrated experimentally that super-resolution imaging can be nonlocally achieved in the far field even without looking at the object. Physical explanation of super-resolution ghost imaging via compressive sampling and its potential applications are also discussed.Comment: 4pages,4figure

    Disruption of the Key Ca2+ Binding Site in the Selectivity Filter of Neuronal Voltage-Gated Calcium Channels Inhibits Channel Trafficking

    Get PDF
    Voltage-gated calcium channels are exquisitely Ca2+ selective, conferred primarily by four conserved pore-loop glutamate residues contributing to the selectivity filter. There has been little previous work directly measuring whether the trafficking of calcium channels requires their ability to bind Ca2+ in the selectivity filter or to conduct Ca2+. Here, we examine trafficking of neuronal CaV2.1 and 2.2 channels with mutations in their selectivity filter and find reduced trafficking to the cell surface in cell lines. Furthermore, in hippocampal neurons, there is reduced trafficking to the somatic plasma membrane, into neurites, and to presynaptic terminals. However, the CaV2.2 selectivity filter mutants are still influenced by auxiliary α2δ subunits and, albeit to a reduced extent, by β subunits, indicating the channels are not grossly misfolded. Our results indicate that Ca2+ binding in the pore of CaV2 channels may promote their correct trafficking, in combination with auxiliary subunits. Furthermore, physiological studies utilizing selectivity filter mutant CaV channels should be interpreted with caution

    Pentapotassium dicitrato(4-)manganate(III) pentahydrate

    Get PDF
    The centrosymmetric crystal structure pentapotassium dicitrato(4-) manganate(III) pentahydrate, K-5[Mn(C6H4O7) (2)].5H(2)O, has two independent anions, both of which lie at inversion centers in the triclinic unit cell. The Mn atoms are O, O', O"-chelated by the citrate entity and the six O atoms surrounding each Mn atom constitute an octahedron. The K atoms interact with the anions and the water molecules, leading to the formation of a network structure that also features extensive hydrogen bonding

    A novel class of microRNA-recognition elements that function only within open reading frames.

    Get PDF
    MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells
    • …
    corecore